Mukul Gagrani

Machine Learning Researcher/Scientist

profile.jpg

I work as a staff research sceintist at Qualcomm AI research. I currently work on improving the efficiency of Large Language Models. In particular, I am interested in the efficient inference with LLMs for their deployment on edge. In the past I have worked on Machine Learning for Combinatorial Optimization, Reinforcement Learning and stochastic control.

I obtained my PhD in Electrical & Computer Engineering from University of Southern California (USC) in 2020 under the supervision of Dr. Ashutosh Nayyar and Dr. Rahul Jain. Before that, I finished my undergrad in Electrical Engineering from IIT Kanpur in 2013.

selected publications

  1. CVPR
    multimodal_spd.png
    On Speculative Decoding for Multimodal Large Language Models
    Mukul Gagrani*, Raghavv Goel*, Wonseok Jeon, Junyoung Park, Mingu Lee, and Christopher Lott
    IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2024
  2. rsd.png
    Recursive Speculative Decoding: Accelerating LLM Inference via Sampling Without Replacement
    Wonseok Jeon, Mukul Gagrani, Raghavv Goel, Junyoung Park, Mingu Lee, and Christopher Lott
    arXiv preprint arXiv:2402.14160, 2024
  3. ICLR
    Direct Alignment of Draft Model for Speculative Decoding with Chat-Fine-Tuned LLMs
    Raghavv Goel, Mukul Gagrani, Wonseok Jeon, Junyoung Park, Mingu Lee, and Christopher Lott
    ICLR Workshop on Mathematical and Empirical Understanding of Foundation Models, 2024
  4. ICLR
    dag_scheduling.png
    Neural DAG scheduling via one-shot priority sampling
    Wonseok Jeon*, Mukul Gagrani*, Burak Bartan, Weiliang Will Zeng, Harris Teague, Piero Zappi, and Christopher Lott
    ICLR, 2022
  5. NeurIPS
    topoformer.png
    Neural topological ordering for computation graphs
    Mukul Gagrani*, Corrado Rainone*, Yang Yang, Harris Teague, Wonseok Jeon, Herke Van Hoof, Will Zeng, Piero Zappi, Christopher Lott, and Roberto Bondesan
    NeurIPS, 2022
  6. Posterior sampling-based reinforcement learning for control of unknown linear systems
    Yi Ouyang, Mukul Gagrani, and Rahul Jain
    IEEE Transactions on Automatic Control, 2019
  7. NeurIPS
    tsde_regret.png
    Learning unknown markov decision processes: A thompson sampling approach
    Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain
    NeurIPS, 2017