publications

* denotes equal contribution

2024

  1. CVPR
    multimodal_spd.png
    On Speculative Decoding for Multimodal Large Language Models
    Mukul Gagrani*, Raghavv Goel*, Wonseok Jeon, Junyoung Park, Mingu Lee, and Christopher Lott
    IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2024
  2. rsd.png
    Recursive Speculative Decoding: Accelerating LLM Inference via Sampling Without Replacement
    Wonseok Jeon, Mukul Gagrani, Raghavv Goel, Junyoung Park, Mingu Lee, and Christopher Lott
    arXiv preprint arXiv:2402.14160, 2024
  3. ICLR
    Direct Alignment of Draft Model for Speculative Decoding with Chat-Fine-Tuned LLMs
    Raghavv Goel, Mukul Gagrani, Wonseok Jeon, Junyoung Park, Mingu Lee, and Christopher Lott
    ICLR Workshop on Mathematical and Empirical Understanding of Foundation Models, 2024

2022

  1. ICLR
    dag_scheduling.png
    Neural DAG scheduling via one-shot priority sampling
    Wonseok Jeon*, Mukul Gagrani*, Burak Bartan, Weiliang Will Zeng, Harris Teague, Piero Zappi, and Christopher Lott
    ICLR, 2022
  2. NeurIPS
    topoformer.png
    Neural topological ordering for computation graphs
    Mukul Gagrani*, Corrado Rainone*, Yang Yang, Harris Teague, Wonseok Jeon, Herke Van Hoof, Will Zeng, Piero Zappi, Christopher Lott, and Roberto Bondesan
    NeurIPS, 2022
  3. A modified Thompson sampling-based learning algorithm for unknown linear systems
    Mukul Gagrani, Sagar Sudhakara, Aditya Mahajan, Ashutosh Nayyar, and Yi Ouyang
    In 2022 IEEE 61st Conference on Decision and Control (CDC) , 2022

2021

  1. Thompson sampling for linear quadratic mean-field teams
    Mukul Gagrani, Sagar Sudhakara, Aditya Mahajan, Ashutosh Nayyar, and Yi Ouyang
    In 2021 60th IEEE Conference on Decision and Control (CDC) , 2021
  2. A relaxed technical assumption for posterior sampling-based reinforcement learning for control of unknown linear systems
    Mukul Gagrani, Sagar Sudhakara, Aditya Mahajan, Ashutosh Nayyar, and Yi Ouyang
    arXiv preprint arXiv:2108.08502, 2021

2020

  1. Regret analysis for learning in a multi-agent linear-quadratic control problem
    Seyed Mohammad Asghari, Mukul Gagrani, and Ashutosh Nayyar
    In 2020 American Control Conference (ACC) , 2020
  2. Weakly coupled constrained Markov decision processes in Borel spaces
    Mukul Gagrani, and Ashutosh Nayyar
    In 2020 American Control Conference (ACC) , 2020
  3. Worst-case guarantees for remote estimation of an uncertain source
    Mukul Gagrani, Yi Ouyang, Mohammad Rasouli, and Ashutosh Nayyar
    IEEE Transactions on Automatic Control, 2020
  4. Optimal scheduling strategy for networked estimation with energy harvesting
    Marcos M Vasconcelos, Mukul Gagrani, Ashutosh Nayyar, and Urbashi Mitra
    IEEE Transactions on Control of Network Systems, 2020

2019

  1. Posterior sampling-based reinforcement learning for control of unknown linear systems
    Yi Ouyang, Mukul Gagrani, and Rahul Jain
    IEEE Transactions on Automatic Control, 2019

2018

  1. Thompson sampling for some decentralized control problems
    Mukul Gagrani, and Ashutosh Nayyar
    In 2018 IEEE Conference on Decision and Control (CDC) , 2018
  2. Scheduling and estimation strategies in a sequential networked estimation problem
    Mukul Gagrani, Marcos M Vasconcelos, and Ashutosh Nayyar
    In 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton) , 2018

2017

  1. Learning-based control of unknown linear systems with thompson sampling
    Yi Ouyang, Mukul Gagrani, and Rahul Jain
    arXiv preprint arXiv:1709.04047, 2017
  2. NeurIPS
    tsde_regret.png
    Learning unknown markov decision processes: A thompson sampling approach
    Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain
    NeurIPS, 2017
  3. Control of unknown linear systems with thompson sampling
    Yi Ouyang, Mukul Gagrani, and Rahul Jain
    In 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton) , 2017
  4. Decentralized minimax control problems with partial history sharing
    Mukul Gagrani, and Ashutosh Nayyar
    In 2017 American Control Conference (ACC) , 2017

2016

  1. Centralized minimax control
    Mukul Gagrani, and Ashutosh Nayyar
    2016

2014

  1. Transmit and receive antenna pairing in MIMO relay networks
    Mukul Gagrani, and Ajit Kumar Chaturvedi
    IEEE Communications Letters, 2014

2011

  1. On noise-enhanced distributed inference in the presence of Byzantines
    Mukul Gagrani, Pranay Sharma, Satish Iyengar, V Sriram Siddhardh Nadendla, Aditya Vempaty, Hao Chen, and Pramod K Varshney
    In 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton) , 2011